Manipulating data with Pandas
You can combine data from different sources into a single DataFrame.
Imagine that you are tasked with calculating GDP to understand the health of the US economy. You have gathered the data you need from disparate sources in different formats.
You can calculate gross domestic product using the supplied DataFrames for personal consumption expenditures, government expenditures, gross private domestic investment, and net exports. The DataFrames ge
, gpdi
, ne
, and pce
are provided.
Este exercício faz parte do curso
Intermediate Python for Finance
Instruções do exercício
- Combine the supplied source DataFrames
ge
,gpdi
,ne
andpce
in that order into a single new DataFrame. - Sum the values in each row to produce the GDP per year.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Combine the source DataFrames into one
gdp = pd.____([ge, gpdi, ____, ____], axis=1)
# Add the columns and create a new column with the result
gdp['GDP'] = gdp.____(np.sum, axis=1)