BoW model for movie taglines
In this exercise, you have been provided with a corpus of more than 7000 movie tag lines. Your job is to generate the bag of words representation bow_matrix for these taglines. For this exercise, we will ignore the text preprocessing step and generate bow_matrix directly.
We will also investigate the shape of the resultant bow_matrix. The first five taglines in corpus have been printed to the console for you to examine.
Este exercício faz parte do curso
Feature Engineering for NLP in Python
Instruções do exercício
- Import the
CountVectorizerclass fromsklearn. - Instantiate a
CountVectorizerobject. Name itvectorizer. - Using
fit_transform(), generatebow_matrixforcorpus.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Import CountVectorizer
from sklearn.feature_extraction.text import ____
# Create CountVectorizer object
____ = ____
# Generate matrix of word vectors
bow_matrix = vectorizer.____(____)
# Print the shape of bow_matrix
print(bow_matrix.shape)