Warming up data-wrangling
Let's warm up your tidyverse data wrangling skills a bit and look at the number of cases reported by year for the American region ('AMR').
To do this, we will first filter the dataset to our desired region, then make a simple scatter plot of the year by cases.
In addition, set the opacity of the points to 50% (0.5) so we can get a sense of data overlap.
Deze oefening maakt deel uit van de cursus
Visualization Best Practices in R
Oefeninstructies
- Filter
who_diseaseso we just only keep data from the'AMR'region. - Modify the aesthetics in the data to map the
yearto the x-axis, andcasesto the y-axis. - Lower the opacity (
alpha) of the points to0.5to get a sense of overlap ingeom_point()
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# filter data to AMR region.
amr_region <- who_disease %>%
___(___)
# map x to year and y to cases.
ggplot(amr_region, aes(___)) +
# lower alpha to 0.5 to see overlap.
geom_point(___)