Tuning an RBF kernel SVM
In this exercise you will build a tuned RBF kernel SVM for the given training dataset (available in dataframe trainset) and calculate the accuracy on the test dataset (available in data frame testset). You will then plot the tuned decision boundary against the test dataset.
Deze oefening maakt deel uit van de cursus
Support Vector Machines in R
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
#tune model
tune_out <- ___(x = trainset[, -3], y = trainset[, 3],
gamma = 5*10^(-2:2),
cost = c(0.01, 0.1, 1, 10, 100),
type = "C-classification", kernel = ___)