Aan de slagGa gratis aan de slag

Creating dummy variables

Being able to include categorical features in the model building process can enhance performance as they may add information that contributes to prediction accuracy.

The music_df dataset has been preloaded for you, and its shape is printed. Also, pandas has been imported as pd.

Now you will create a new DataFrame containing the original columns of music_df plus dummy variables from the "genre" column.

Deze oefening maakt deel uit van de cursus

Supervised Learning with scikit-learn

Cursus bekijken

Oefeninstructies

  • Use a relevant function, passing the entire music_df DataFrame, to create music_dummies, dropping the first binary column.
  • Print the shape of music_dummies.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Create music_dummies
music_dummies = ____

# Print the new DataFrame's shape
print("Shape of music_dummies: {}".format(____))
Code bewerken en uitvoeren