Visualizing model complexity
Now you have calculated the accuracy of the KNN model on the training and test sets using various values of n_neighbors, you can create a model complexity curve to visualize how performance changes as the model becomes less complex!
The variables neighbors, train_accuracies, and test_accuracies, which you generated in the previous exercise, have all been preloaded for you. You will plot the results to aid in finding the optimal number of neighbors for your model.
Deze oefening maakt deel uit van de cursus
Supervised Learning with scikit-learn
Oefeninstructies
- Add a title
"KNN: Varying Number of Neighbors". - Plot the
.values()method oftrain_accuracieson the y-axis againstneighborson the x-axis, with a label of"Training Accuracy". - Plot the
.values()method oftest_accuracieson the y-axis againstneighborson the x-axis, with a label of"Testing Accuracy". - Display the plot.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Add a title
plt.title("____")
# Plot training accuracies
plt.plot(____, ____, label="____")
# Plot test accuracies
plt.plot(____, ____, label="____")
plt.legend()
plt.xlabel("Number of Neighbors")
plt.ylabel("Accuracy")
# Display the plot
____