Aan de slagGa gratis aan de slag

Sparse retrieval with BM25

Time to try out a sparse retrieval implementation! You'll create a BM25 retriever to ask questions about an academic paper on RAG, which has already been split into chunks called chunks. An OpenAI chat model and prompt have also been defined as llm and prompt, respectively. You can view the prompt provided by printing it in the console.

Deze oefening maakt deel uit van de cursus

Retrieval Augmented Generation (RAG) with LangChain

Cursus bekijken

Oefeninstructies

  • Create a BM25 sparse retriever from the documents stored in chunks; configure it to return 5 documents in retrieval.
  • Create an LCEL retrieval chain to integrate the BM25 retriever with the llm and prompt provided.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Create a BM25 retriever from chunks
retriever = ____

# Create the LCEL retrieval chain
chain = ({"context": ____, "question": ____}
         | ____
         | ____
         | StrOutputParser()
)

print(chain.invoke("What are knowledge-intensive tasks?"))
Code bewerken en uitvoeren