Aan de slagGa gratis aan de slag

Loading PDF files for RAG

To begin implementing Retrieval Augmented Generation (RAG), you'll first need to load the documents that the model will access. These documents can come from a variety of sources, and LangChain supports document loaders for many of them.

In this exercise, you'll use a document loader to load a PDF document containing the paper, Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks by Lewis et al. (2021). This file is available for you as 'rag_paper.pdf'.

Note: pypdf, a dependency for loading PDF documents in LangChain, has already been installed for you.

Deze oefening maakt deel uit van de cursus

Retrieval Augmented Generation (RAG) with LangChain

Cursus bekijken

Oefeninstructies

  • Import the appropriate class for loading PDF documents in LangChain.
  • Create a document loader for the 'rag_paper.pdf' document.
  • Load the document into memory to view the contents of the first document, or page.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Import library
from langchain_community.document_loaders import ____

# Create a document loader for rag_paper.pdf
loader = ____

# Load the document
data = ____
print(data[0])
Code bewerken en uitvoeren