Aan de slagGa gratis aan de slag

Recognizing missing data mechanisms

In this exercise, you will face six different scenarios in which some data are missing. Try assigning each of them to the most likely missing data mechanism. As a refresher, here are some general guidelines:

  • If the reason for missingness is purely random, it's MCAR.
  • If the reason for missingness can be explained by another variable, it's MAR.
  • If the reason for missingness depends on the missing value itself, it's MNAR.

Deze oefening maakt deel uit van de cursus

Handling Missing Data with Imputations in R

Cursus bekijken

Praktische interactieve oefening

Zet theorie om in actie met een van onze interactieve oefeningen.

Begin met trainen