Aan de slagGa gratis aan de slag

Correcting Right Skew Data

In the slides we showed how you might use log transforms to fix positively skewed data (data whose distribution is mostly to the left). To correct negative skew (data mostly to the right) you need to take an extra step called "reflecting" before you can apply the inverse of \(\log\), written as (1/\(\log\)) to make the data look more like normal a normal distribution. Reflecting data uses the following formula to reflect each value: \((x_{\text{max}} +1) – x\).

Deze oefening maakt deel uit van de cursus

Feature Engineering with PySpark

Cursus bekijken

Oefeninstructies

  • Use the aggregate function skewness() to verify that 'YEARBUILT' has negative skew.
  • Use the withColumn() to create a new column 'Reflect_YearBuilt' and reflect the values of 'YEARBUILT'.
  • Using 'Reflect_YearBuilt' column, create another column 'adj_yearbuilt' by taking 1/log() of the values.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

from pyspark.sql.functions import log

# Compute the skewness
print(df.____({____: ____}).____())

# Calculate the max year
max_year = df.____({____: ____}).____()[0][0]

# Create a new column of reflected data
df = df.____(____, (max_year + 1) - df[____])

# Create a new column based reflected data
df = df.____(____, 1 / ____(df[____]))
Code bewerken en uitvoeren