Aan de slagGa gratis aan de slag

Gradient checkpointing with Trainer

You want to use gradient checkpointing to reduce the memory footprint of your model. You've seen how to write the explicit training loop with Accelerator, and now you'd like to use a simplified interface without training loops with Trainer. The exercise will take some time to run with the call to trainer.train().

Set up the arguments for Trainer to use gradient checkpointing.

Deze oefening maakt deel uit van de cursus

Efficient AI Model Training with PyTorch

Cursus bekijken

Oefeninstructies

  • Use four gradient accumulation steps in TrainingArguments.
  • Enable gradient checkpointing in TrainingArguments.
  • Pass in the training arguments to Trainer.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

training_args = TrainingArguments(output_dir="./results",
                                  evaluation_strategy="epoch",
                                  # Use four gradient accumulation steps
                                  gradient_accumulation_steps=____,
                                  # Enable gradient checkpointing
                                  ____=____)
trainer = Trainer(model=model,
                  # Pass in the training arguments
                  ____=____,
                  train_dataset=dataset["train"],
                  eval_dataset=dataset["validation"],
                  compute_metrics=compute_metrics)
trainer.train()
Code bewerken en uitvoeren