Aan de slagGa gratis aan de slag

Gradient accumulation with Trainer

You're setting up Trainer for your language translation model to use gradient accumulation, so that you can effectively train on larger batches. Your model will simplify translations by training on paraphrases from the MRPC dataset. Configure the training arguments to accumulate gradients! The exercise will take some time to run with the call to trainer.train().

The model, dataset, and compute_metrics() function have been pre-defined.

Deze oefening maakt deel uit van de cursus

Efficient AI Model Training with PyTorch

Cursus bekijken

Oefeninstructies

  • Set the number of gradient accumulation steps to two.
  • Pass in the training arguments to Trainer.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    # Set the number of gradient accumulation steps to two
    ____=____
)
trainer = Trainer(
    model=model,
    # Pass in the training arguments to Trainer
    ____=____,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
    compute_metrics=compute_metrics,
)
trainer.train()
Code bewerken en uitvoeren