Aan de slagGa gratis aan de slag

Identifying model drift

Now you'll plot the model scores over time to visualize when drift occurs. By adding the threshold line and RMSE rolling windows, you can see how the trailing error lines indicate performance degradation.

The fc_log dataset with calculated moving averages, rmse_threshold, and Plotly as go have been pre-loaded for you.

Deze oefening maakt deel uit van de cursus

Designing Forecasting Pipelines for Production

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

p = go.Figure()

# Add RMSE line
p.add_trace(go.Scatter(x=fc_log["forecast_start"], y=fc_log["____"],
                        mode='lines',
                        name='RMSE',
                        line=dict(color='royalblue', width=2)))

# Add the RMSE rolling windows for 7 and 14 days
p.add_trace(go.Scatter(x=fc_log["forecast_start"], y=fc_log["____"],
                        mode='lines',
                        name='7 Days MA',
                        line=dict(color='green', width=2)))

p.add_trace(go.Scatter(x=fc_log["forecast_start"], y=fc_log["____"],
                        mode='lines',
                        name='14 Days MA',
                        line=dict(color='orange', width=2)))

p.add_trace(go.Scatter(x=[fc_log["forecast_start"].min(), fc_log["forecast_start"].max()], 
y=[rmse_threshold, rmse_threshold], 
name="Threshold",
line=dict(color="red", width=2, dash="dash")))

# Add plot titles and show the plot
p.update_layout(title="Forecast Error Rate Over Time",
                xaxis_title="____",
                yaxis_title="____", 
                height=400,
                title_x=0.5,
                margin=dict(t=50, b=50, l=50, r=50))
p.show()
Code bewerken en uitvoeren