Aan de slagGa gratis aan de slag

Defining the schema

Let's start by defining the expected schema for data validation. This is a critical step in ensuring data quality throughout the ETL pipeline.

You'll use the pointblank library to define the schema structure.

The dataset has already been loaded for you as ts.

Deze oefening maakt deel uit van de cursus

Designing Forecasting Pipelines for Production

Cursus bekijken

Oefeninstructies

  • Start by importing pointblank.
  • Define the schema using the right method.
  • Set the respondent column to object type and value column to float64 type.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Import the required library
import ____ as ____

# Define the schema and set columns
table_schema =  pb.____(
    columns=[
        ("period", "datetime64[ns]"),   
        ("respondent", "____"),
        ("respondent-name", "object"),
        ("type", "object"),
        ("type-name", "object"),
        ("value", "____"),
        ("value-units", "object")])

print(table_schema)
Code bewerken en uitvoeren