Defining the schema
Let's start by defining the expected schema for data validation. This is a critical step in ensuring data quality throughout the ETL pipeline.
You'll use the pointblank library to define the schema structure.
The dataset has already been loaded for you as ts.
Deze oefening maakt deel uit van de cursus
Designing Forecasting Pipelines for Production
Oefeninstructies
- Start by importing
pointblank. - Define the schema using the right method.
- Set the
respondentcolumn toobjecttype andvaluecolumn tofloat64type.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Import the required library
import ____ as ____
# Define the schema and set columns
table_schema = pb.____(
columns=[
("period", "datetime64[ns]"),
("respondent", "____"),
("respondent-name", "object"),
("type", "object"),
("type-name", "object"),
("value", "____"),
("value-units", "object")])
print(table_schema)