Aan de slagGa gratis aan de slag

Training models with backtesting

Building on the previous exercises, you'll now evaluate your models using backtesting. You'll define 4 partitions, each with a 12-hour shift and a 72-hour testing window, and execute the process with the cross_validation() method.

The ts DataFrame and initialized MLForecast object (mlf) are preloaded, so you can focus on setting up and running the backtesting. Let's get started!

Deze oefening maakt deel uit van de cursus

Designing Forecasting Pipelines for Production

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Import a library for interval calibration
from mlforecast.utils import ____

# Set parameters
h = ____  
step_size = ____  
partitions = 4  
n_windows = 3  
method = "conformal_distribution"  
levels = [95] 

# Initialize PredictionIntervals
pi = ____(h=____, n_windows=____, method=____)
Code bewerken en uitvoeren