Aan de slagGa gratis aan de slag

Logging tuned models

You have been experimenting with different model hyperparameters and need to log your latest round of experiment results to MLflow, let's do it!

Deze oefening maakt deel uit van de cursus

Designing Forecasting Pipelines for Production

Cursus bekijken

Oefeninstructies

  • Set the experiment name as "hyperparameter_tuning".
  • Loop over the index and rows of df.
  • Start an MLflow run.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Set the experiment name
experiment_name = "____"
experiment_id = mlflow.create_experiment(experiment_name)

# Loop through the DataFrame
for idx, row in df.____():
  # Start a run
  with mlflow.____(experiment_id=____):
    model_params = ml_models[row["model_label"]].get_params()
    model_params["model_name"] = row["model_name"]
    model_params["model_label"] = row["model_label"]
    model_params["partition"] = row["partition"]
    model_params["lags"] = list(range(1, 24))
    model_params["date_features"] = ["month", "day", "dayofweek", "week", "hour"]
    mlflow.log_params(model_params)
    mlflow.log_metric("mape", row["mape"])
    mlflow.log_metric("rmse", row["rmse"])
Code bewerken en uitvoeren