Filtering queries
In this exercise, you'll practice querying the 'datacamp-index' Pinecone index. You'll connect to the index and query it using the vector provided to retrieve similar vectors. You'll also use metadata filtering to optimize your querying and return the most relevant search results.
Questo esercizio fa parte del corso
Vector Databases for Embeddings with Pinecone
Istruzioni dell'esercizio
- Initialize the Pinecone connection with your API key.
- Retrieve the MOST similar vector to the
vectorprovided, only searching through vectors where the metadata'year'equals2024.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Initialize the Pinecone client with your API key
pc = Pinecone(api_key="____")
index = pc.Index('datacamp-index')
# Retrieve the MOST similar vector with the year 2024
query_result = ____
print(query_result)