IniziaInizia gratis

Building a linear regression model

Now you have created your feature and target arrays, you will train a linear regression model on all feature and target values.

As the goal is to assess the relationship between the feature and target values there is no need to split the data into training and test sets.

X and y have been preloaded for you as follows:

y = sales_df["sales"].values
X = sales_df["radio"].values.reshape(-1, 1)

Questo esercizio fa parte del corso

Supervised Learning with scikit-learn

Visualizza il corso

Istruzioni dell'esercizio

  • Import LinearRegression.
  • Instantiate a linear regression model.
  • Predict sales values using X, storing as predictions.

Esercizio pratico interattivo

Prova questo esercizio completando il codice di esempio.

# Import LinearRegression
from ____.____ import ____

# Create the model
reg = ____()

# Fit the model to the data
____

# Make predictions
predictions = ____

print(predictions[:5])
Modifica ed esegui il codice