IniziaInizia gratis

Pipeline for song genre prediction: I

Now it's time to build a pipeline. It will contain steps to impute missing values using the mean for each feature and build a KNN model for the classification of song genre.

The modified music_df dataset that you created in the previous exercise has been preloaded for you, along with KNeighborsClassifier and train_test_split.

Questo esercizio fa parte del corso

Supervised Learning with scikit-learn

Visualizza il corso

Istruzioni dell'esercizio

  • Import SimpleImputer and Pipeline.
  • Instantiate an imputer.
  • Instantiate a KNN classifier with three neighbors.
  • Create steps, a list of tuples containing the imputer variable you created, called "imputer", followed by the knn model you created, called "knn".

Esercizio pratico interattivo

Prova questo esercizio completando il codice di esempio.

# Import modules
____
____

# Instantiate an imputer
imputer = ____()

# Instantiate a knn model
knn = ____

# Build steps for the pipeline
steps = [("____", ____), 
         ("____", ____)]
Modifica ed esegui il codice