IniziaInizia gratis

Implementing the training step

In this exercise, you'll implement the training_step() method in a PyTorch Lightning module designed for an image classification task. Your implementation should unpack a batch of images and labels, compute the model predictions via the forward pass, calculate the cross entropy loss, and log the training loss.

Questo esercizio fa parte del corso

Scalable AI Models with PyTorch Lightning

Visualizza il corso

Istruzioni dell'esercizio

  • Ensure that you compute predictions using the forward pass.
  • Calculate the cross entropy loss.
  • Log the training loss.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

from torch.nn.functional import cross_entropy

def training_step(self, batch, batch_idx):
    x, y = batch
    # Ensure that you compute predictions using the forward pass
    y_hat = ____
    # Calculate the cross entropy loss
    loss = ____
    # Log the loss
    self.____("train_loss", loss)
    return loss
Modifica ed esegui il codice