Introducing the LightningModule
Get ready to build your first LightningModule! In this hands-on exercise, you'll set up the core structure of a classification workflow. You'll define a linear layer, pass data through it in the forward method, and compute the loss in the training step. This clean structure gives you a solid foundation to start experimenting with your models.
The torch and lightning.pytorch, imported as pl, have been preloaded for you.
Questo esercizio fa parte del corso
Scalable AI Models with PyTorch Lightning
Istruzioni dell'esercizio
- Define a class
LightModelthat inherits frompl.LightningModule. - Define a linear layer to transform your input, assuming the input features are 16 and there are 10 output classes.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Define the model class
class LightModel(____):
# Define a linear layer to transform your input
def __init__(self):
super().__init__()
self.layer = ____
def forward(self, x):
return self.layer(x)
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = torch.nn.functional.cross_entropy(logits, y)
return loss