IniziaInizia gratis

Chaining, Graph RAG style!

Now to bring everything together to create a Graph RAG QA chain! You've been provided with the same graph you've worked with throughout this chapter (with some potential variation in the specific nodes and relationships), and you'll connect this with another LLM to generate the Cypher query and return the natural language response.

Questo esercizio fa parte del corso

Retrieval Augmented Generation (RAG) with LangChain

Visualizza il corso

Istruzioni dell'esercizio

  • Create a Graph Cypher QA chain using an OpenAI chat model and the graph you've created previously.
  • Invoke the chain with the input provided.
  • Extract and print the result text from the result.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Create the Graph Cypher QA chain
graph_qa_chain = ____.____(
    ____=ChatOpenAI(api_key="", temperature=0), ____, verbose=True
)

# Invoke the chain with the input provided
result = ____({"query": "Who discovered the element Radium?"})

# Print the result text
print(f"Final answer: {result['____']}")
Modifica ed esegui il codice