IniziaInizia gratis

Loading PDF files for RAG

To begin implementing Retrieval Augmented Generation (RAG), you'll first need to load the documents that the model will access. These documents can come from a variety of sources, and LangChain supports document loaders for many of them.

In this exercise, you'll use a document loader to load a PDF document containing the paper, Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks by Lewis et al. (2021). This file is available for you as 'rag_paper.pdf'.

Note: pypdf, a dependency for loading PDF documents in LangChain, has already been installed for you.

Questo esercizio fa parte del corso

Retrieval Augmented Generation (RAG) with LangChain

Visualizza il corso

Istruzioni dell'esercizio

  • Import the appropriate class for loading PDF documents in LangChain.
  • Create a document loader for the 'rag_paper.pdf' document.
  • Load the document into memory to view the contents of the first document, or page.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Import library
from langchain_community.document_loaders import ____

# Create a document loader for rag_paper.pdf
loader = ____

# Load the document
data = ____
print(data[0])
Modifica ed esegui il codice