Exploratory data analysis with xarray
Xarray makes working with multi-dimensional data easier, just like pandas makes working with tabular data easier. Best of all, Xarray can use Dask in the background to help you process the data quickly and efficiently.
You have been tasked with analyzing the European weather dataset further. Now that you know how to use Xarray, you will start by doing some exploratory data analysis.
xarray has been imported for you as xr.
Questo esercizio fa parte del corso
Parallel Programming with Dask in Python
Istruzioni dell'esercizio
- Using Xarray's
open_zarr()function, open the"data/era_eu.zarr"dataset. - Using the DataSet's
.isel()method select the zeroth index on thetimecoordinate. - Select the
'temp'variable from the zeroth indexds_seland plot it onax1. - Select the
'precip'variable from the zeroth indexds_seland plot it onax2.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Open the ERA5 dataset
ds = ____.____("____")
# Select the zeroth time in the DataSet
ds_sel = ds.____(____=____)
fig, (ax1, ax2) = plt.subplots(1,2, figsize=(8, 3))
# Plot the zeroth temperature field on ax1
____[____].____(ax=____)
# Plot the zeroth precipitation field on ax2
____[____].____(ax=____)
plt.show()