Computing the R-squared of a model
Let's compute the \(R^2\) summary value for the two numerical explanatory/predictor variable model you fit in the Chapter 3, price as a function of size and the number of bedrooms.
Recall that \(R^2\) can be calculated as:
$$1 - \frac{\text{Var}(\text{residuals})}{\text{Var}(y)}$$
Questo esercizio fa parte del corso
Modeling with Data in the Tidyverse
Istruzioni dell'esercizio
Compute \(R^2\) by summarizing the residual and log10_price columns.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Fit model
model_price_2 <- lm(log10_price ~ log10_size + bedrooms,
data = house_prices)
# Get fitted/values & residuals, compute R^2 using residuals
get_regression_points(model_price_2) %>%
___(r_squared = ___ - ___(___) / ___(___))