IniziaInizia gratis

Exploratory visualization of age

Let's perform an exploratory data analysis (EDA) of the numerical explanatory variable age. You should always perform an exploratory analysis of your variables before any formal modeling. This will give you a sense of your variable's distributions, any outliers, and any patterns that might be useful when constructing your eventual model.

Questo esercizio fa parte del corso

Modeling with Data in the Tidyverse

Visualizza il corso

Istruzioni dell'esercizio

  • Using the ggplot2 package, create a histogram of age with bins in 5 year increments.
  • Label the x axis with "age" and the y axis with "count".

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Load packages
library(moderndive)
library(ggplot2)

# Plot the histogram
ggplot(evals, aes(x = ___)) +
  geom_histogram(binwidth = ___) +
  labs(___ = "___", ___ = "___")
Modifica ed esegui il codice