IniziaInizia gratis

Plot losses

Once we've fit a model, we usually check the training loss curve to make sure it's flattened out. The history returned from model.fit() is a dictionary that has an entry, 'loss', which is the training loss. We want to ensure this has more or less flattened out at the end of our training.

Questo esercizio fa parte del corso

Machine Learning for Finance in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Plot the losses ('loss') from history.history.
  • Set the title of the plot as the last loss from history.history, and round it to 6 digits.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Plot the losses from the fit
plt.plot(____)

# Use the last loss as the title
plt.title('loss:' + str(round(____, 6)))
plt.show()
Modifica ed esegui il codice