IniziaInizia gratis

Visualize the results

We've fit our model with the custom loss function, and it's time to see how it is performing. We'll check the R\(^2\) values again with sklearn's r2_score() function, and we'll create a scatter plot of predictions versus actual values with plt.scatter(). This will yield some interesting results!

Questo esercizio fa parte del corso

Machine Learning for Finance in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Create predictions on the test set with .predict(), model_2, and scaled_test_features.
  • Evaluate the R\(^2\) score on the test set predictions using test_preds and test_targets.
  • Plot the test set targets vs actual values with plt.scatter(), and label it 'test'.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Evaluate R^2 scores
train_preds = model_2.predict(scaled_train_features)
test_preds = ____
print(r2_score(train_targets, train_preds))
print(____)

# Scatter the predictions vs actual -- this one is interesting!
plt.scatter(train_preds, train_targets, label='train')
plt.scatter(____)  # plot test set
plt.legend(); plt.show()
Modifica ed esegui il codice