IniziaInizia gratis

Comparing NLTK with spaCy NER

Using the same text you used in the first exercise of this chapter, you'll now see the results using spaCy's NER annotator. How will they compare?

The article has been pre-loaded as article. To minimize execution times, you'll be asked to specify the keyword argument disable=['tagger', 'parser', 'matcher'] when loading the spaCy model, because you only care about the entity in this exercise.

Questo esercizio fa parte del corso

Introduction to Natural Language Processing in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Import spacy.
  • Load the 'en_core_web_sm' model using spacy.load(). Specify the additional keyword arguments disable=['tagger', 'parser', 'matcher'].
  • Create a spacy document object by passing article into nlp().
  • Using ent as your iterator variable, iterate over the entities of doc and print out the labels (ent.label_) and text (ent.text).

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Import spacy
____

# Instantiate the English model: nlp
nlp = ____

# Create a new document: doc
doc = ____

# Print all of the found entities and their labels
for ____ in ____:
    print(____, ____)
Modifica ed esegui il codice