Anomaly score
Your visualization suggested that thyroid disease could be detected from anomalous hormone measurements.
In this exercise you'll use an isolation forest to generate an anomaly score for thyroid levels, and compare the resulting score against the true disease status.
Questo esercizio fa parte del corso
Introduction to Anomaly Detection in R
Istruzioni dell'esercizio
- Fit an isolation forest to the
thyroidhormone measurements. - Generate anomaly scores for the thyroid data and append the result to
thyroidas the new columniso_score. - Use the
boxplot()function to compare the score distribution for patients with and without thyroid disease, using thelabelcolumn.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Fit isolation forest
thyroid_forest <- iForest(___, ___ = 200, phi = 100)
# Anomaly score
thyroid$iso_score <- predict(thyroid_forest, ___)
# Boxplot of the anomaly score against labels
boxplot(___ ~ ___, ___, col = "olivedrab4")