ARIMA Forecasting
Before we build an ensemble model we need an actual time series forecast of the demand itself so we can average the forecasts. The training data object MET_hi is saved in your workspace as well as the validation data MET_hi_v.
Questo esercizio fa parte del corso
Forecasting Product Demand in R
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Build an ARIMA model using the auto.arima function
MET_hi_model_arima <- ___(___)
# Forecast the ARIMA model you just built above
for_MET_hi <- ___(___, h = ___)