Fitting and assessing the model
Now that you have addressed missing values and created dummy variables, it is time to assess your model's performance!
The attritiondataset, along with the testand train splits, the lr_recipe and your declared logistic_model() are all loaded for you.
Questo esercizio fa parte del corso
Feature Engineering in R
Istruzioni dell'esercizio
- Bundle model and recipe in workflow.
- Fit workflow to the train data.
- Generate an augmented data frame for performance assessment.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Bundle model and recipe in workflow
lr_workflow <- ___() %>%
add_model(lr_model) %>%
add_recipe(lr_recipe)
# Fit workflow to the train data
lr_fit <- ___(lr_workflow, data = train)
# Generate an augmented data frame for performance assessment
lr_aug <- lr_fit %>% ___(test)
lr_aug %>% roc_curve(truth = Attrition, .pred_No) %>% autoplot()
bind_rows(lr_aug %>% roc_auc(truth = Attrition, .pred_No),
lr_aug %>% accuracy(truth = Attrition, .pred_class))