IniziaInizia gratis

Bagging: the scikit-learn way

Let's now apply scikit-learn's BaggingClassifier to the Pokémon dataset.

You obtained an F1 score of around 0.63 with your custom bagging ensemble.

Will BaggingClassifier() beat it? Time to find out!

Questo esercizio fa parte del corso

Ensemble Methods in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Instantiate the base model, clf_dt: a "restricted" decision tree with a max depth of 4.
  • Build a bagging classifier with the decision tree as base estimator, using 21 estimators.
  • Predict the labels of the test set.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Instantiate the base model
clf_dt = ____

# Build the Bagging classifier
clf_bag = ____(____, ____, random_state=500)

# Fit the Bagging model to the training set
clf_bag.fit(X_train, y_train)

# Predict the labels of the test set
pred = ____

# Show the F1-score
print('F1-Score: {:.3f}'.format(f1_score(y_test, pred)))
Modifica ed esegui il codice