MulaiMulai sekarang secara gratis

Perfecting the forward method

After setting up layers in the __init__ method, the forward method dictates how data flows through them. In PyTorch Lightning, this separation keeps your code clean and easy to maintain. You've already seen how to structure the constructor-now it's time to focus on the forward pass, ensuring your classification logic is clear and optimized for training. Here, the layers in __init__ are already defined for you, so you can concentrate purely on the forward flow.

The lightning.pytorch and torch.nn have already been imported as pl and nn.

Latihan ini adalah bagian dari kursus

Scalable AI Models with PyTorch Lightning

Lihat Kursus

Petunjuk latihan

  • Implement the forward method inside ClassifierModel.
  • Apply a ReLU activation after the hidden layer.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

class ClassifierModel(pl.LightningModule):
  
    def __init__(self, input_dim, hidden_dim, output_dim):
        super().__init__()
        self.hidden = nn.Linear(input_dim, hidden_dim)
        self.output = nn.Linear(hidden_dim, output_dim)
        
    # Define forward method
    def ____(self, ____):
        # Complete the forward pass
        x = self.hidden(x)
        x = ____(x)
        x = self.output(x)
        return x
Edit dan Jalankan Kode