MulaiMulai sekarang secara gratis

CV fine-tuning: dataset prep

In this exercise, you will prepare the Stanford Cars dataset for training. This will involve using the datasets library to split the dataset and applying the preprocessing transformations. The dataset consists of 8k labeled images of 196 car models:

an example car from the dataset

The dataset has been loaded as dataset. The transformations have been defined for you as transforms, and consist of renormalization and type conversion.

Latihan ini adalah bagian dari kursus

Multi-Modal Models with Hugging Face

Lihat Kursus

Petunjuk latihan

  • Create an 80/20 train/test split from dataset using the .train_test_split() method.
  • Apply the transformations (transforms) to data_splits.
  • Plot the augmented image from the first set of pixel values in dataset_transformed.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Create a train/test split within the HF dataset
data_splits = ____(test_size=____, seed=42)

# Apply the transformations
dataset_transformed = ____

# Plot the transformed image
plt.imshow(dataset_transformed["train"][0]["____"].permute(1, 2, 0))
plt.show()
Edit dan Jalankan Kode