CV fine-tuning: dataset prep
In this exercise, you will prepare the Stanford Cars dataset for training. This will involve using the datasets library to split the dataset and applying the preprocessing transformations. The dataset consists of 8k labeled images of 196 car models:

The dataset has been loaded as dataset. The transformations have been defined for you as transforms, and consist of renormalization and type conversion.
Latihan ini adalah bagian dari kursus
Multi-Modal Models with Hugging Face
Petunjuk latihan
- Create an 80/20 train/test split from
datasetusing the.train_test_split()method. - Apply the transformations (
transforms) todata_splits. - Plot the augmented image from the first set of pixel values in
dataset_transformed.
Latihan interaktif praktis
Cobalah latihan ini dengan menyelesaikan kode contoh berikut.
# Create a train/test split within the HF dataset
data_splits = ____(test_size=____, seed=42)
# Apply the transformations
dataset_transformed = ____
# Plot the transformed image
plt.imshow(dataset_transformed["train"][0]["____"].permute(1, 2, 0))
plt.show()