MulaiMulai sekarang secara gratis

Maximization function

We saw that the EM algorithm is an iterative method between two steps: the expectation and the maximization. In the last exercise, you created the expectation function. Now, create the maximization function which takes the data frame with the probabilities and outputs the estimations of the means and proportions.

Latihan ini adalah bagian dari kursus

Mixture Models in R

Lihat Kursus

Petunjuk latihan

Create the function maximization by completing the sample code.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

maximization <- function(___){
  means_estimates <- data_with_probs %>%
    summarise(mean_1 = sum(x * ___) / ___(prob_cluster1),
              mean_2 = sum(x * ___) / ___(prob_cluster2)) %>% 
    as.numeric()
  props_estimates <- data_with_probs %>% 
    summarise(proportion_1 = ___(prob_cluster1),
              proportion_2 = 1 - ___) %>% 
    as.numeric()
  list(means_estimates, props_estimates)   
}
Edit dan Jalankan Kode