Maximization function
We saw that the EM algorithm is an iterative method between two steps: the expectation and the maximization. In the last exercise, you created the expectation function. Now, create the maximization function which takes the data frame with the probabilities and outputs the estimations of the means and proportions.
Latihan ini adalah bagian dari kursus
Mixture Models in R
Petunjuk latihan
Create the function maximization by completing the sample code.
Latihan interaktif praktis
Cobalah latihan ini dengan menyelesaikan kode contoh berikut.
maximization <- function(___){
means_estimates <- data_with_probs %>%
summarise(mean_1 = sum(x * ___) / ___(prob_cluster1),
mean_2 = sum(x * ___) / ___(prob_cluster2)) %>%
as.numeric()
props_estimates <- data_with_probs %>%
summarise(proportion_1 = ___(prob_cluster1),
proportion_2 = 1 - ___) %>%
as.numeric()
list(means_estimates, props_estimates)
}