MulaiMulai sekarang secara gratis

Constant Fill

Constant fill is a useful method of imputation when the missing, NA values in a dataset can be assumed to be a certain value. Sometimes when moving data between different platforms and software, certain values in the data may be 'lost' or flagged as NA erroneously. Using constant fill imputation lets you replace these missing values with a default.

In this exercise, you'll impute missing values for the car_sales time series, which represents daily car sales for an employee at a car dealership.

Latihan ini adalah bagian dari kursus

Manipulating Time Series Data in R

Lihat Kursus

Petunjuk latihan

  • Determine the total number of NA values in the car_sales time series.

  • Use constant fill imputation to fill the missing values of car_sales with 0; assign this to the car_sales_filled variable.

  • Autoplot the car_sales_filled time series.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Add together the number of NA values
___

# Fill in missing values with zero
___ <- ___

# Autoplot the filled time series
autoplot(___) + 
  labs(y = "Daily Car Sales") + 
  theme_light()
Edit dan Jalankan Kode