MulaiMulai sekarang secara gratis

Generating text

LLMs have many capabilities with text generation being one of the most popular.

You need to generate a response to a customer review found in text; it contains the same customer review for the Riverview Hotel you've seen before.

The pipeline module has been loaded for you.

Latihan ini adalah bagian dari kursus

Introduction to LLMs in Python

Lihat Kursus

Petunjuk latihan

  • Instantiate the generator pipeline specifying an appropriate task for generating text.
  • Complete the prompt by including the text and response in the f-string.
  • Complete the model pipeline by specifying a maximum length of 150 tokens and setting the pad_token_id to the end-of-sequence token.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Instantiate the pipeline
generator = pipeline(____, model="gpt2")

response = "Dear valued customer, I am glad to hear you had a good stay with us."

# Complete the prompt
prompt = f"Customer review:\n{____}\n\nHotel reponse to the customer:\n{____}"

# Complete the model pipeline
outputs = generator(prompt, ____, pad_token_id=____, truncation=True)

print(outputs[0]["generated_text"])
Edit dan Jalankan Kode