sapply can't simplify, now what?
It seems like we've hit the jackpot with sapply(). On all of the examples so far, sapply() was able to nicely simplify the rather bulky output of lapply(). But, as with life, there are things you can't simplify. How does sapply() react?
We already created a function, below_zero(), that takes a vector of numerical values and returns a vector that only contains the values that are strictly below zero.
Latihan ini adalah bagian dari kursus
Intermediate R
Petunjuk latihan
- Apply
below_zero()overtempusingsapply()and store the result infreezing_s. - Apply
below_zero()overtempusinglapply(). Save the resulting list in a variablefreezing_l. - Compare
freezing_stofreezing_lusing theidentical()function.
Latihan interaktif praktis
Cobalah latihan ini dengan menyelesaikan kode contoh berikut.
# temp is already prepared for you in the workspace
# Definition of below_zero()
below_zero <- function(x) {
return(x[x < 0])
}
# Apply below_zero over temp using sapply(): freezing_s
# Apply below_zero over temp using lapply(): freezing_l
# Are freezing_s and freezing_l identical?