MulaiMulai sekarang secara gratis

Tree-based AdaBoost regression

AdaBoost models are usually built with decision trees as the base estimators. Let's give this a try now and see if model performance improves even further.

We'll use twelve estimators as before to have a fair comparison. There's no need to instantiate the decision tree as it is the base estimator by default.

Latihan ini adalah bagian dari kursus

Ensemble Methods in Python

Lihat Kursus

Petunjuk latihan

  • Build and fit an AdaBoostRegressor using 12 estimators. You do not have to specify a base estimator.
  • Calculate the predictions on the test set.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Build and fit a tree-based AdaBoost regressor
reg_ada = ____(____, random_state=500)
reg_ada.fit(X_train, y_train)

# Calculate the predictions on the test set
pred = ____

# Evaluate the performance using the RMSE
rmse = np.sqrt(mean_squared_error(y_test, pred))
print('RMSE: {:.3f}'.format(rmse))
Edit dan Jalankan Kode