MulaiMulai sekarang secara gratis

Identify highly correlated features

Using the data in house_sales_df, you will practice identifying features that have high correlation. High correlation among features indicates redundant information and can cause problems in modeling such as multicollinearity in regression models. You will determine which of the highly correlated features to remove. A correlation matrix will help you identify highly correlated features.

The tidyverse and corrr packages have been loaded for you.

Latihan ini adalah bagian dari kursus

Dimensionality Reduction in R

Lihat Kursus

Petunjuk latihan

  • Create a correlation plot with the correlations printed on the plot.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Create a correlation plot of the house sales
house_sales_df %>% 
  ___() %>% 
  ___() %>% 
  ___(print_cor = ___) +
  theme(axis.text.x = element_text(angle = 90, hjust = 1))
Edit dan Jalankan Kode