MulaiMulai sekarang secara gratis

Building a U-Net: forward method

With the encoder and decoder layers defied, you can now implement the forward() method of the U-net. The inputs have already been passed through the encoder for you. However, you need to define the last decoder block.

The goal of the decoder is to upsample the feature maps so that its output is of the same height and width as the U-Net's input image. This will allow you to obtain pixel-level semantic masks.

Latihan ini adalah bagian dari kursus

Deep Learning for Images with PyTorch

Lihat Kursus

Petunjuk latihan

  • Define the last decoder block, using torch.cat() to form the skip connection.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

def forward(self, x):
    x1 = self.enc1(x)
    x2 = self.enc2(self.pool(x1))
    x3 = self.enc3(self.pool(x2))
    x4 = self.enc4(self.pool(x3))

    x = self.upconv3(x4)
    x = torch.cat([x, x3], dim=1)
    x = self.dec1(x)

    x = self.upconv2(x)
    x = torch.cat([x, x2], dim=1)
    x = self.dec2(x)

    # Define the last decoder block with skip connections
    x = ____
    x = ____
    x = ____

    return self.out(x)
Edit dan Jalankan Kode