CommencerCommencer gratuitement

Decision variables of case study

Continue the case study of the Capacitated Plant Location model of a car manufacture. You are given four Pandas data frames demand, var_cost, fix_cost, and cap containing the regional demand (thous. of cars), variable production costs (thous. $US), fixed production costs (thous. $US), and production capacity (thous. of cars). All these variables have been printed to the console for your viewing.

Cet exercice fait partie du cours

Supply Chain Analytics in Python

Afficher le cours

Instructions

  • Initialize the class.
  • Define the decision variables using LpVariable.dicts and python's list comprehension.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Initialize Class
model = LpProblem("Capacitated Plant Location Model", ____)

# Define Decision Variables
loc = ['USA', 'Germany', 'Japan', 'Brazil', 'India']
size = ['Low_Cap','High_Cap']
x = LpVariable.dicts("production_",
                     [(i,j) for ____ in ____ for ____ in ____],
                     lowBound=____, upBound=____, cat=_____)
y = LpVariable.dicts("plant_", 
                     [____ for ____ in ____ for ____ in ____], cat=____)
Modifier et exécuter le code