CommencerCommencer gratuitement

Visualizing the Adjusted Demographic Trends

Let's compare changes in borrowing across demographics over time. The data frame rydf you created in the last exercise is available in your workspace.

Note: We removed the row corresponding to "Not Avail".

Cet exercice fait partie du cours

Scalable Data Processing in R

Afficher le cours

Instructions

tidyr and ggplot2 are loaded in your workspace.

  • Print the rydf and pop_proportion objects.
  • Convert rydf to a long-formatted data frame by gathering all columns except Race.
  • Create a line chart with Year and Adjusted_Count on the x and y axes, respectively.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# View rydf
___ 

# View pop_proportion
___

# Gather on all variables except Race
rydfl <- ___(rydf, ___, names_to = "Year", values_to = "Count")

# Create a new adjusted count variable
rydfl$Adjusted_Count <- rydfl$Count / pop_proportion[rydfl$Race]

# Plot
ggplot(rydfl, aes(x = ___, y = ___, group = Race, color = Race)) + 
    geom_line()
Modifier et exécuter le code