CommencerCommencer gratuitement

Simulate MA(q) model

Moving average (MA) models also depend upon the previous iteration. Unlike AR models, the dependency is on the noise part.

Here's the algorithm in R:

ma1 <- function(n, mu, theta, sd) {
  q <- length(theta)
  x <- numeric(n)
  eps <- rnorm(n, 0, sd)
  for(i in seq(q + 1, n)) {
    value <- mu + eps[i]
    for(j in seq_len(q)) {
      value <- value + theta[j] * eps[i - j]
    }
    x[i] <- value
  }
  x
}

n is the number of simulated observations, mu is the expected value, theta is a numeric vector of moving average coefficients, and sd is the standard deviation of the noise.

Earlier in the chapter, you used R::rnorm() to generate a single number from a normal distribution. There is also Rcpp::rnorm(), which can generate a whole numeric vector worth in one go. This takes the same arguments as R's rnorm(). Complete the function definition of ma2(), a C++ translation of ma1().

Cet exercice fait partie du cours

Optimizing R Code with Rcpp

Afficher le cours

Instructions

  • Generate the noise vector as eps. Use rnorm() from the Rcpp namespace (not the R namespace).
  • Inside the outer for loop, calculate value as mu plus the ith noise value.
  • Inside the inner for loop, increase value by the jth element of theta times the "i minus j minus 1"th element of eps.
  • After the loops, set ith element of x to value.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

#include 
using namespace Rcpp ;

// [[Rcpp::export]]
NumericVector ma2( int n, double mu, NumericVector theta, double sd ){
  int q = theta.size(); 
  NumericVector x(n);
  
  // Generate the noise vector
  NumericVector eps = ___(___, 0.0, ___);
    
  // Loop from q to n
  for(int i = q; i < n; i++) {
    // Value is mean plus noise
    double value = ___ + ___;
    // Loop from zero to q
    for(int j = 0; j < q; j++) {
      // Increase by the jth element of theta times
      // the "i minus j minus 1"th element of eps
      value += ___ * ___;
    }
    // Set ith element of x to value
    ___ = ___;
  }
    return x ;
}

/*** R
d <- data.frame(
  x = 1:50,
  y = ma2(50, 10, c(1, -0.5), 1)
)
ggplot(d, aes(x, y)) + geom_line()
*/
Modifier et exécuter le code