Running a model using ranges
You have just finished creating a list of hyperparameters and ranges to use when tuning a predictive model for an assignment. You have used max_depth
, min_samples_split
, and max_features
as your range variable names.
Cet exercice fait partie du cours
Model Validation in Python
Instructions
- Randomly select a
max_depth
,min_samples_split
, andmax_features
using your range variables. - Print out all of the parameters for
rfr
to see which values were randomly selected.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
from sklearn.ensemble import RandomForestRegressor
# Fill in rfr using your variables
rfr = RandomForestRegressor(
n_estimators=100,
max_depth=random.____(____),
min_samples_split=random.____(____),
max_features=random.____(____))
# Print out the parameters
print(rfr.____)