CommencerCommencer gratuitement

Using SGDClassifier

In this final coding exercise, you'll do a hyperparameter search over the regularization strength and the loss (logistic regression vs. linear SVM) using SGDClassifier().

Cet exercice fait partie du cours

Linear Classifiers in Python

Afficher le cours

Instructions

  • Instantiate an SGDClassifier instance with random_state=0.
  • Search over the regularization strength and the hinge vs. log_loss losses.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# We set random_state=0 for reproducibility 
linear_classifier = ____(random_state=0)

# Instantiate the GridSearchCV object and run the search
parameters = {'alpha':[0.00001, 0.0001, 0.001, 0.01, 0.1, 1], 
             'loss':[____]}
searcher = GridSearchCV(linear_classifier, parameters, cv=10)
searcher.fit(X_train, y_train)

# Report the best parameters and the corresponding score
print("Best CV params", searcher.best_params_)
print("Best CV accuracy", searcher.best_score_)
print("Test accuracy of best grid search hypers:", searcher.score(X_test, y_test))
Modifier et exécuter le code