AutoML avec h2o
Une fonctionnalité très pratique de h2o est l’apprentissage automatique automatique (AutoML).
La bibliothèque h2o et seeds_train_data ont déjà été chargées pour vous et le code suivant a été exécuté :
h2o.init()
seeds_train_data_hf <- as.h2o(seeds_train_data)
y <- "seed_type"
x <- setdiff(colnames(seeds_train_data_hf), y)
seeds_train_data_hf[, y] <- as.factor(seeds_train_data_hf[, y])
sframe <- h2o.splitFrame(seeds_train_data_hf, seed = 42)
train <- sframe[[1]]
valid <- sframe[[2]]
Cet exercice fait partie du cours
Optimisation des hyperparamètres en R
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Run automatic machine learning
automl_model <- ___(x = x,
y = y,
training_frame = train,
___ = 10,
seed = 42)