CommencerCommencer gratuitement

Recherche aléatoire avec h2o

Vous allez maintenant utiliser la recherche aléatoire. La bibliothèque h2o et seeds_train_data ont déjà été chargées pour vous et le code suivant a été exécuté :

h2o.init()
seeds_train_data_hf <- as.h2o(seeds_train_data)

y <- "seed_type"
x <- setdiff(colnames(seeds_train_data_hf), y)

seeds_train_data_hf[, y] <- as.factor(seeds_train_data_hf[, y])

sframe <- h2o.splitFrame(seeds_train_data_hf, seed = 42)
train <- sframe[[1]]
valid <- sframe[[2]]

dl_params <- list(hidden = list(c(50, 50), c(100, 100)),
                  epochs = c(5, 10, 15),
                  rate = c(0.001, 0.005, 0.01))

Cet exercice fait partie du cours

Optimisation des hyperparamètres en R

Afficher le cours

Instructions

  • Définissez un objet de critères de recherche qui spécifie une recherche aléatoire avec un temps d’exécution maximum de 10 secondes.
  • Ajoutez cet objet de critères de recherche à l’endroit approprié dans la fonction h2o.grid pour entraîner les modèles aléatoires.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Define search criteria
search_criteria <- list(strategy = ___, 
                        ___ = 10, # this is way too short & only used to keep runtime short!
                        seed = 42)

# Train with random search
dl_grid <- h2o.grid("deeplearning", 
                    grid_id = "dl_grid",
                    x = x, 
                    y = y,
                    training_frame = train,
                    validation_frame = valid,
                    seed = 42,
                    hyper_params = dl_params,
                    ___ = ___)
Modifier et exécuter le code