What 's the value added?
The problem of bad model predictions is still an open issue. This time, you investigate the relation between log(SALES) and PRICE. The corresponding scatterplot is created using the formula argument log(SALES) ~ PRICE in the plot() function. Again, the model predictions obtained from the log.model are graphed using the abline() function. The abline() function adds a straight line specified in log-sales intercept/ price slope form when applied to the log.model object .
Cet exercice fait partie du cours
Building Response Models in R
Instructions
- Display the relation between
log(SALES)andPRICEin a simple scatterplot. - Again, explain
log(SALES)byPRICEand assign the result to an object namedlog.model. - Add the model predictions by applying the function
abline()to thelog.modelobject.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Plot log(SALES) against PRICE
___(___, data = sales.data)
# Explain log(SALES) by PRICE
log.model <- ___(___, data = sales.data)
# Add the model predictions